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Abstract 

There has been much recent interest in curvature-dependent contour evolution, particularly 
when the resultant family of contours satisfies the heat (diffusion) equation. Modeling the 
evolution of a shape's boundary as a real-valued solution to the reaction-diffusion equation 
has been shown to be useful for shape decomposition [3]. This approach to contour evolution 
involves solving a partial differential equation (PDE), is computationally demanding, and must 
deal with the problem of singularities. In this paper, we describe a low-precision discrete 
method of contour evolution, based on the 8-connected chain code of the contour, that performs 
analogously to PDE-based methods and avoids the singularity problem. (Preliminary work 
along these lines was described in [12].) Our discrete method is not limited to linear functions 
of curvature; we give several examples of contour evolution processes that depend nonlinearly 
on curvature, including examples studied in [6], and illustrate their possible uses. 

Keywords: Contour evolution, Curvature, Shape 
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1 Preliminary Definitions 

Digital shapes are non-empty, finite sets of grid points S = {P : P G Z2}. The grid points 
can be regarded as the centers of unit squares ("cells"). The background (complement) of a 
shape (or set of shapes) S is the set of grid points S = {P : P g" S}. The digitization of a 
shape in the real plane is the set of cells that intersect the shape (or the set of grid points at 
the centers of these cells). 

For two grid points P = (»1,2/1) and Q = (»2,2/2), P and Q are called 4-adjacent (or 
4-neighbors) if 

|»i -»2I + I2/1 — 2/21 = 1- 

Similarly, they are called 8-adjacent (or 8-neighbors) if 

maxflxi - X2U2/1 — 2/21) = L 

The same terminology is used for the cells that have the points at their centers. The reflexive, 
transitive closure of i-adjacency (i = 4 or 8) is called i-connectedness; in other words, P and 
Q are called i-connected if there exists a sequence of grid points P = Po, Pi, ■ ■ ■, Pn = Q, such 
that Pfc and Pk+i are i-adjacent, 0 < k < n. 

The «-boundary 5t- of a digital shape S is the set of cells of S that are i-adjacent to cells 
of the background: 

S- = {P:PeS,P i-adjacent to Q G S}. 

From now on, "boundary" and "adjacency" will refer to the 4-boundary and 8-adjacency, re- 
spectively, and we will drop the subscript i. 

It can be shown [8] that if a digital shape S is 8-connected and its complement is 4-connected, 
the cells of its boundary can be cyclically ordered, such that successive cells in the boundary 
are 8-adjacent. (More generally, this can be done for the boundary associated with each 4- 
connected component of the background of S, e.g., if S is a shape with holes.) The contour 
C — {Pk — (xk, Vk)i k = 1,..., n} is the 8-connected path obtained by following the boundary 
of S in a clockwise fashion. The chain code of C consists of the n vectors vi = Pk-iPk, each 
of which can be represented by an integer j G [0,7], where j denotes the vector whose slope is 
45j°. The chain code can be regarded as representing a digital curve. 

The remainder of this paper is organized as follows. Section 2 describes a method for discrete 
approximation of the curvature of a boundary, which takes into account the nonisotropicness of 
the grid. Section 3 describes continuous contour evolution guided by solutions to the reaction- 
diffusion equation, and also discusses discrete contour evolution processes. Section 4 illustrates 
discrete contour evolution with examples using both linear and nonlinear functions of boundary 
curvature. 

2 Curvature Estimation 

In contour evolution processes, a contour is progressively deformed, with the amount of defor- 
mation at a point depending on the curvature of the contour at that point. In this paper we 
will define discrete contour evolution processes that are applied to the digital curve defined by 
the chain code of the boundary of a digital shape. 

The curvature of a twice-differentiable curve at a point can be expressed in terms of the first 
and second derivatives of the curve at that point. No such simple definition of curvature exists 
for a digital curve. One might try to define it by substituting differences (derived from the 
chain code) for derivatives in a formula for the curvature, but this approach is not satisfactory 
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Figure 1: (a) Raw signed differences between consecutive chain codes, (b) Differences as a 
function of distance from the cell P. (c) The curvature estimates when these differences are 
convolved with the Gaussian shown in (b). 

since the vectors in a chain code have slopes that differ by multiples of 45°; thus, small changes 
in slope cannot be locally described. 

The 45° limitation is a result of the standard use of 8-neighbor chain codes for curve repre- 
sentation. Generalized chain codes[9] provide finer angular resolution, but it can be shown that 
they offer no advantage over the 8-neighbor chain code from the point of view of representa- 
tional precision. The average quantization error between a curve and its discrete approximation 
is directly proportional to the grid size (scale) regardless of the particular code chosen. In gen- 
eral, better approximations of a curve can be obtained by reducing the grid size; but small 
changes in slope still go undetected. Smoothing the signed differences between adjacent chain 
codes usually improves slope and curvature estimation, but the amount of smoothing needed 
to properly handle a shape that has features of multiple sizes is difficult to determine. 

Several methods of estimating the curvature of the boundary of a real shape from the chain 
code of the boundary of its digitization are described in [13]. It is shown there that better 
results are achieved when the nonisotropicness of the square grid is taken into account. In this 
paper we use a variant of the "resampling method" discussed in [13]; it consists of two steps: 

1. Compute the signed differences between consecutive chain codes (Figure la). 

2. Smooth these differences with a Gaussian, taking into account the nonisotropicness of the 
grid (Figure lb). 

Specification of the Gaussian used for smoothing requires, in addition to the scale parameter 
a, a truncation parameter m which specifies the size of the smoothing neighborhood: 

Gff(i) = (^—e-i2^2),i e[-m,m] 
a\'2n 

In order to minimize truncation error, m is set to the smallest integer larger than 3cr [11]. We 
discuss the choice of a in the next section, where we also discuss the precision used in the digital 
computations. 



3    Contour Evolution 

3.1 Continuous Contour Evolution 

Contour evolution refers to a process of progressively deforming a contour or curve. An impor- 
tant class of deformations of a curve can be described as a linear sum of two local displacements 
along the normal N(P) at a given point P of the curve: 

(/3o + /?iK(P))tf(P), 

where K(P) is the curvature at P. The repeated displacement results in motion (i.e., defor- 
mation) of the contour; the ßo term gives rise to a constant motion and the ß\K term gives 
rise to motion with magnitude proportional to K(P). Constant motion is equivalent to the 
morphological operations of erosion or dilation. It can be shown[3] that curvature-dependent 
motion corresponds to the effects of smoothing the curve with a Gaussian. These two processes 
have different properties and can be used to capture various properties of the shape bounded 
by the curve. It can be shown [2] that the combined process satisfies a viscous conservation 
law—a reaction-diffusion equation. It has also been shown that the processes described by 
this equation can be used to decompose a shape into parts and protrusions by applying the 
process for a sufficient amount of time. When run in reverse, the process can simulate a natural 
evolution of the shape from an initial oval [4].1 

3.2 Discrete Contour Evolution 

3.2.1    Iterative Erosion and Dilation 

In this paper we will study discrete iterative contour deformation processes in which cells on the 
boundary of a digital shape are either removed, or produce additional cells. A boundary cell 
that is removed from the shape is said to be "eroded," and a cell that produces an additional cell 
is said to be "dilated". To make the erosion or dilation of the boundary at each cell dependent 
on the estimated curvature, we control the number of iterations before a boundary cell P erodes 
or dilates; specifically, we let this number be 

[2*/|/(P)|]   /(P)#0 
oo f(P) = 0 

where f(P) is a function of the digital curvature of the boundary at P, and b is the number 
of bits of precision used in the computations. The sign of / determines whether P erodes or 
dilates: by convention, P erodes when / is negative; it dilates when / is positive; and it neither 
erodes nor dilates when / is zero. 

As previously stated, a cell that erodes simply disappears from the shape. A cell that dilates 
produces a cell in the direction of the outward pointing normal to the contour of the shape at 
that cell. The normal direction is computed by combining the directions from the cell to the 
two adjacent cells on the boundary. Specifically, if the difference between these directions is a 

*It is observed in [3] that when used separately, morphological operators and Gaussian smoothing cannot 
produce intuitive shape decompositions. The former class of operators (closing, for example) can be used to 
decompose an object into blob-like and ribbon-line parts (see, e.g., [1]; other methods of decomposing a shape are 
described in [7, 10]). The latter type of operator smooths the object into a circle, and suggests a protrusion-based 
view of shape representation (see also [5]). The reaction-diffusion equation provides a mathematical framework in 
which these contrasting views of shape representation are combined, reflecting the idea that objects are naturally 
perceived as compositions of both blob- and ribbon-like parts, and of protrusions. 



Figure 2: (a) A two-pixel-thick spiral, (b) Dilation occurs faster in the diagonal directions, (c) 
Scaling dilation along the diagonals, (d) Redefining dilation along a diagonal to be dilation in 
the two adjacent axial directions. 

multiple of 90°, the normal direction is midway between them; if it is an odd multiple of 45°, 
it is the axial direction nearest to midway between them. 

Ideally, the rate of erosion or dilation should depend solely on the value of /. In fact, this 
is difficult to achieve, since dilation in a diagonal direction is y/2 times faster than dilation 
along an axis. This is illustrated in Figure 2, where f(P) = K{P) is applied to a two-pixel- 
thick spiral. Figure 2b shows a thickening (and a "splitting") in the diagonal directions. Two 
methods were used to reduce this effect of the nonisotropy of the grid. In the first method, 
dilation in the diagonal directions was scaled by \j\f2 (Figure 2c). In the second, diagonal 
dilation was replaced by dilations in the two adjacent axial directions (Figure 2d). As the 
figures illustrate, the second method gave better results. This method was therefore used in 
the remainder of our experiments. 

3.2.2     Parameter Selection 

In Section 2, we described how to measure the curvature of a digital curve by using Gaussian 
smoothing of the chain code. To determine a reasonable value for the scale parameter a of the 
Gaussian, we experimented with the spiral shape shown in Figure 2a. When f(P) = n(P), we 
expect the following: 

1. The spiral should shrink to a single cell. 

2. The spiral should never intersect itself. 

3. The spiral should never break. 

4. The thickness of the spiral should remain constant. 

The results shown in Figure 3 indicate that a = 3 is adequate. As we recall from Section 2, 
the truncation parameter, m, that defines the size of the neighborhood over which Gaussian 
smoothing is done, is then set to 10, which is the smallest integer less than 3a. Evidently, 
higher values for a would have produced similar results, but at a higher computational cost. 

We also used the spiral shape to test the effect of varying the number of bits, b, of precision 
used in the computations. The results shown in Figure 4 indicate that b = 6 is adequate. 
Evidently, higher values for b would have produced similar results. 
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Figure 3: The effect of varying the Gaussian scale parameter, a, on discrete contour evolution. 

Figure 4: The effect of varying the number of bits, b, used in the computations. 
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Figure 5: Discrete, linear curvature-based contour evolution of a dumbbell.  The bottom row 
corresponds to t = 0, and the «-axis shows values of ßo (with ß\ = 1). 

4    Experiments 

4.1    Linear Functions of Curvature 

Linear functions of curvature, 
f(P) = ß0+ß1K(P), 

were used in our initial experiments. Such functions were extensively studied in [2], and repre- 
sent reaction-diffusion processes. Recall that ßo corresponds to constant motion of the boundary 
curve, and ß\k corresponds to curvature-dependent motion. When ß\ = 0, the rate of motion is 
constant; negative ßo produces morphological dilation and positive ßo produces morphological 
erosion. When ßo = 0, the rate of motion at a cell is proportional to the curvature of the 
boundary at that cell. 

The results of applying this process to various test shapes for various values of ßo (using 
ßi = 1) are shown in Figures 5-9. Each test shape was scaled to 64 by 64 pixels, which matched 
the dimensions of the spiral test shape used in Figures 2-4. In the first example (Figure 5), 
the "dumbbell" splits into two pieces as constant motion is added to the process. Similarly, 
the fingers split from the "hand" as ßo increases (Figure 6). In the spiral example (Figure 7), 
small values of ßo cause the spiral to disintegrate. In the "bird" example (Figure 8), when the 
constant term exceeds the curvature of the negatively curved circular hole, the hole dilates. In 
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Figure 6: Discrete, linear curvature-based contour evolution of a hand. The bottom row corre- 
sponds to t = 0, and the x-axis shows values of ßo (with ß\ = 1). 
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Figure 7:   Discrete, linear curvature-based contour evolution of a spiral, 
corresponds to t = 0, and the z-axis shows values of ßo (with ß\ = 1). 

The bottom row 

the final "coffee bean" example (Figure 9), adding a constant term causes the coffee beans to 
separate. These results are very similar to those achieved by continuous methods [2]. 

4.2    Nonlinear Functions of Curvature 

Most of the past work on curvature-dependent contour evolution has assumed linear dependency 
on curvature, but one recent paper [6] also considered nonlinear functions of curvature based 
on using only non-negative, or only non-positive curvature values (i.e., the contour does not 
change at points where its curvature has the wrong sign). As we shall see in Section 4.2.1, our 
digital approach yields results closely similar to those obtained in [6]. 

Our digital contour evolution process is also not restricted to linear functions of the contour's 
curvature. In this section we define three simple types of nonlinear functions of curvature, and 
show the results of applying these functions to various test shapes. The first type consists of 
"rectified" functions, where either negative or positive curvatures are suppressed. The second 
type consists of "thresholded" functions, where either low or high curvatures are suppressed. 
The last group of nonlinear functions we consider are based on the absolute value of the curva- 
ture. 
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Figure 8: Discrete, linear curvature-based contour evolution of a bird. The bottom row corre- 
sponds to t = 0, and the z-axis shows values of ßo (with ß\ = 1). 
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Figure 9:   Discrete, linear curvature-based contour evolution of a windowed image of coffee 
beans. The bottom row corresponds to t = 0, and the x-axis shows values of ßo (with /?i = 1). 
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Figure 10: Erosion proportional to positive curvature. 

4.2.1     Rectified Curvature 

1. Positive Curvature: 

K(P) < 0 
K(P) > 0 

The results of applying this function to three of the test shapes, as well as two shapes 
used in [6], are shown in Figure 10. In these examples, the rate of erosion is determined 
by positive curvature; there is no dilation. The examples are shown over different time 
periods to illustrate the long-term behavior of the process. 

In the first example, the spiral shortens due to its high positive curvature at both ends. 
In addition, the spiral gradually "thins" to one pixel thick. The thinning begins at the 
center of the spiral (which is more strongly curved) and continues outward. At one pixel 
thick, there are two curvatures at each non-end cell since it is on two boundaries. The 
average curvature at these cells is zero, which stops the thinning and prevents the spiral 
from breaking. 

In the second ("hand") example, the fingers of the hand erode and eventually disappear; 
the remaining disc then slowly erodes. 

11 
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Figure 11: Dilation proportional to negative curvature. 

In the third ("bird") example, the bird's beak quickly erodes relative to the other con- 
vexities. Erosion stops at the border of the bird's eye, leaving a one-pixel-thick circle. 

In the fourth and fifth examples, which should be compared to Figures 3 and 4 of [6], the 
process removes the positive notches in the square, and erodes the "rosette" into a hollow 
square. 

2. Negative Curvature: 

f(P) 
_ \   K(P)   K(P) < 0 
~ 1      0      K{P) > 0 

The results of applying this function to the same five test shapes are shown in Figure 11. 
In these examples, the rate of dilation is determined by negative curvature; there is no 
erosion. 

In the spiral example, dilation begins near the center of the spiral. The process eventually 
reaches a "steady state" configuration, essentially the spiral's (digital) convex hull. 

In the hand example, the concavities between the fingers fill in, and eventually a convex 
hull is produced. The bird example shows that holes are filled in by this process. 

12 
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Figure 12: Using only high absolute curvature. 

Similarly, in the fourth and fifth examples, the process removes the negative notches in 
the square, and gradually fills in the concavities between the notches; it also fills the hole 
in the rosette. 

4.2.2    Thresholded Curvature 

1. High Curvature: 

f(P) = 
0      \K(P)\ < MAX/2 

K(P)   \K(P)\> MAX/2 

where MAX is the initial maximum curvature. The results of applying this function to 
the spiral and hand shapes are shown in Figure 12. Note that this function involves both 
dilation and erosion. 

In the spiral example, the spiral shrinks at both ends, where its curvature is high. The di- 
lation that occurs along the inner edge of the spiral is quickly re-eroded, and the thickness 
of the spiral does not change. 

In the hand example, the process removes the highly curved features of the hand; the 
fingertips are removed and the deep concavities between the fingers are filled in. 

2. Low Curvature: 

f(P) 
\K(P)\ < MAX/2 
|K(P)| > MAX/2 

where MAX is the initial maximum curvature. The results of applying this function to the 
same two test shapes are shown in Figure 13. Since high positive or negative curvatures 
are ignored, this process requires a relatively large number of iterations until steady state. 

In the spiral example, the combination of erosion along the spiral's outer edge and dilation 
along its inner edge produces a "loosening" and "straightening". Since the ends of the 
spiral remain fixed, the dilations eventually result in the spiral intersecting itself at the 
center; this creates tiny "holes." Since the holes are highly negatively curved, they are not 
filled in. Thus the process leads to a pattern of tiny holes near the center. As the spiral 
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Figure 13: Using only low absolute curvature. 

Figure 14: Erosion proportional to absolute curvature. 

straightens, erosion begins to occur on both sides near the outer end, which causes small 
pieces of the spiral to eventually break off. These pieces are highly curved and therefore 
do not erode. 

In the hand example, the positively curved fingers erode on both sides near their tips, 
which eventually separate from the hand. In addition, the negatively curved areas near the 
bases of the fingers merge together. This process does not appear to produce a meaningful 
decomposition. 

4.2.3    Absolute Curvature 

1. Absolute Value of Curvature: 

f(P) = \<P)\ 

The results of applying this function to the two test shapes are shown in Figure 14. In 
these examples, the rate of erosion is determined by the absolute value of the curvature; 
there is no dilation. 

In the spiral example (note the time scale), the spiral rapidly disintegrates along both its 
exterior and interior sides. It breaks first where its negative curvature is highest. 

14 
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Figure 15:   Separating "coffee beans",   (a) Absolute value of curvature, 
erosion, (c) A variation on absolute value. 

(b) Morphological 

In the hand example, the concavities between the fingers deepen as the fingertips erode. 
The three middle fingers break off from the hand; this is apparently caused by the smooth- 
ing, since the near-zero curvatures on the sides of the fingers near the base are offset by 
the nearby concavity. The disconnected fingers then rapidly erode. 

To illustrate a possible use for the absolute value function, we also applied it to the 
"coffee bean" example shown in Figure 15 (see also Figure 9). Here the deep concavities 
are flanked by relatively low positively curved sides. Using absolute value thus produces 
a "cutting" process that separates the beans: the concavities deepen while the positively 
curved perimeter remains relatively unchanged, as we see in Figure 15a. 

Separation of the beans could also be achieved by morphological erosion (Figure 15b): 

f(P) = A), 

but the use of absolute value has two advantages. First, the absolute value process removes 
60% fewer pixels before the beans split. Second, the absolute value process preserves the 
small bean, while morphological erosion removes it. 

2. A variation: 

The "cutting" process can be improved further by using a variation on absolute value 
which erodes at a faster rate at local minima of the curvature, e.g., 

f(P) = 
|K(P)|   if K(-P) is a local minimum 

||K(P)|   otherwise 

The result of applying this function to the beans is shown in Figure 15c.  This process 
removes 76% fewer pixels than morphological erosion. 

15 



5     Discussion 

This paper has described a discrete method of curvature-dependent contour evolution. The 
method is based on the 8-connected chain code of the contour, and on discrete curvature 
measurement. Discrete estimation of the curvature of the boundary of a real shape from its 
digitization is difficult; the more advanced methods take into account the multiple feature sizes 
of the shape. Our method of curvature measurement takes differences between neighbors, uses 
truncated Gaussian smoothing at a computational precision of only six bits, and takes into 
account the nonisotropicness of the grid. Using linear functions of the discrete curvature for 
contour evolution gives results similar to those produced by continuous solutions to the reaction- 
diffusion equation—in other words, our method generates similar evolutionary sequences. We 
have also investigated several simple non-linear functions of the digital curvature; contour evolu- 
tion processes based on these functions can behave in qualitatively different ways. For example, 
using absolute curvature (guided by negative curvature extrema) results in a "cutting" process. 
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